2 research outputs found

    Measuring Interventional Robustness in Reinforcement Learning

    Full text link
    Recent work in reinforcement learning has focused on several characteristics of learned policies that go beyond maximizing reward. These properties include fairness, explainability, generalization, and robustness. In this paper, we define interventional robustness (IR), a measure of how much variability is introduced into learned policies by incidental aspects of the training procedure, such as the order of training data or the particular exploratory actions taken by agents. A training procedure has high IR when the agents it produces take very similar actions under intervention, despite variation in these incidental aspects of the training procedure. We develop an intuitive, quantitative measure of IR and calculate it for eight algorithms in three Atari environments across dozens of interventions and states. From these experiments, we find that IR varies with the amount of training and type of algorithm and that high performance does not imply high IR, as one might expect.Comment: 17 pages, 13 figure

    Adaptive Selection of the Optimal Strategy to Improve Precision and Power in Randomized Trials

    Full text link
    Benkeser et al. demonstrate how adjustment for baseline covariates in randomized trials can meaningfully improve precision for a variety of outcome types. Their findings build on a long history, starting in 1932 with R.A. Fisher and including more recent endorsements by the U.S. Food and Drug Administration and the European Medicines Agency. Here, we address an important practical consideration: *how* to select the adjustment approach -- which variables and in which form -- to maximize precision, while maintaining Type-I error control. Balzer et al. previously proposed *Adaptive Prespecification* within TMLE to flexibly and automatically select, from a prespecified set, the approach that maximizes empirical efficiency in small trials (N<<40). To avoid overfitting with few randomized units, selection was previously limited to working generalized linear models, adjusting for a single covariate. Now, we tailor Adaptive Prespecification to trials with many randomized units. Using VV-fold cross-validation and the estimated influence curve-squared as the loss function, we select from an expanded set of candidates, including modern machine learning methods adjusting for multiple covariates. As assessed in simulations exploring a variety of data generating processes, our approach maintains Type-I error control (under the null) and offers substantial gains in precision -- equivalent to 20-43\% reductions in sample size for the same statistical power. When applied to real data from ACTG Study 175, we also see meaningful efficiency improvements overall and within subgroups.Comment: 10.5 pages of main text (including 2 tables, 2 figures) + 14.5 pages of Supporting Inf
    corecore